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In this paper, we investigate finitely generated shift-invariant subspaces in L, (R).
We first introduce the notion of the convolution of a vector sequence and a matrix
sequence. Then by the theory of dual space of the normed linear space we obtain the
complete characterizations of finitely generated shift-invariant spaces in L; (R), based
on the existence of generator with linearly independent shifts in finitely generated
shift-invariant subspaces on the real line. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

The shift-invariant spaces generated by a finite number of compactly
supported functions play important role in wavelet theory and other
analysis area. A linear space of functions S on R is said to be shift-invariant
if f(- — k) € Sfor any k € Z whenever f € S. Given a finite collection ¢ =
{1, ¢5,-..,0,,} of compactly supported functions, So(®) denotes the linear
span of {¢;(-—j):i=1,2,...,m;j € Z}. Tt is obvious that Sy(®) is the
smallest shift-invariant space containing @. If @ is a subset of L,(R), we use
S,(®) to denote the closure of So(P) in L,(R). Here, as usual, L,(R) is the
normed linear space of all measurable functions f(x) on R such that |[f(x)}”
is integrable and the norm is defined by

= ([ veras) "

Let /(Z) be the linear space of all sequences on Z, and /y(Z) the linear

subspace consisting of all finitely supported sequences on Z. Given a

sequence ¢ € /(Z), we define |||, = (X, le@))'7?, 1<p<oo, el =
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sup,{|c(a)|}. For 1<p<oo, [,(Z) denotes the normed linear space of all
sequences ¢ on Z such that [|¢||, <oc. For b,c € /(Z) the convolution of b
and c is defined by

bre(@) = ba—ple(p), €z
B

whenever the above series is absolutely convergent. For a given ¢ € /(Z) the
symbol of ¢ is the formal series ), ¢(x)z~* denoted by &(z). We shall use the
semi-convolution to study the structure of S,(®). For a given function ¢
and a sequence ¢ € /(Z) the semi-discrete convolution ¢ *’c is defined as the
sum

> ¢ —a)e()

which is well defined under various assumptions on the function ¢ and the
sequence c¢. It is obvious that this sum makes sense if ¢ has compact
support. S(@) denotes the linear space of all functions Y i, ¢,*'c; where
c=(c1,...,cm) € (I(Z))". The linear space S(@) is called finitely generated
by @. For a subspace 4 of (/(Z))" it corresponds a subspace S, (@) of S(P)
defined as

Sq(®) = {f:f: Z bi*'a,a= (ay,...,an) € A}.
i=1

In [1,2] de Boor, Devore and Ron studied finitely generated shift-
invariant subspaces of L,(R*), and gave a characterization for such spaces in
terms of the Fourier transforms of their generators. In [5] Jia studied shift-
invariant spaces generated by a finite number of compactly supported
functions in L,(R*) (1<p<o0), and gave a characterization of such spaces
in terms of the semi-convolutions of their generators with sequences on Z°.
When s = 1, and 1 <p< oo, without the stability assumption the following
theorem was obtained by Jia [4].

THEOREM. For 1 <p<oo
S,(@) = S(P) N L,(R). (1)

Consequently for 1 <p<oo a function f € L,(R) lies in S,(®) if and only if
there are sequences a; (i =1,...,m) such that

=33 6l - waila).
i=1 o
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However, when p = 1 the situation is completely different. Generally, the
conclusion of the above theorem is not valid in the space L;(R). Here is one
example.

ExampPLE. Let y be the characteristic function of [0,1), and ¥ = y —
7(- = 1). It is obvious that [*°_ f(x)dx = 0 for any function / in So(})). We
also have [*_ f(x)dx =0 for any / € S;(y) since S;(}) is the closure of
So(¥) in L;(R). However [~ y(x)dx = 1. This means that y ¢ S;(y). It is
easy to verify that y =37, ¢(-—j) € S()). Therefore, Si(y)#S@)N
Li(R).

The main purpose of this paper is to give the characterizations of finitely
generated shift-invariant spaces in L; (R). After introducing the convolution
of a vector sequence and a matrix sequence, we study the characterization of
Si(®), and we obtain the sufficient and necessary conditions which
guarantee S;(®) = S(®) N L;(R) by the theory of the dual space of the
normed linear space L;(R).

It is worth noting that when s > 1 it was proved [5] that (1) is true under
the extra assumption that @ consists of a finite number of compactly
supported functions in L,(R*) whose shifts are stable.

2. CHARACTERIZATIONS OF S;(®)

To treat shift-invariant spaces the generators with linearly independent
shifts play important role. Let {f},...,fi} be a finite collection of compactly
supported functions on R and a; = {a;(2)} € [(Z) (j =1,...,k), the shifts
of {fi,...,fx} are said to be linearly independent if

k
S gfilx—a)=0=a4=0, =1,k
Jj=1 o

If, in addition, {f1,...,fx} is a finite collection of compactly supported
functions in L,(R), we say that the shifts of {fi,...,fr} are L,-stable if there
exist two positive constants C; and C, such that for any sequences ay,...,

ax € [P(Z)7
k k k
Y gl <|[D fix'a]| <C Y llall,
=1 = =1

It was proved by Jia and Micchelli [6] that if shifts of {f, ..., fi} are linearly
independent, they are L,-stable.

P
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For the existence of the generator with linearly independent shifts in S(®)
we appeal for the following result which was proved in [4]:

THEOREM(J).  Let @ be a finite collection of nontrivial distributions
on R with compact support. Then there exists another finite collection ¥ of
compactly supported distributions on R with following properties:

(1) The shifts of the elements in ¥ are linearly independent;
(2) #¥Y<#9;
(3) @ C So(¥);
@) S(¥) = S(@).
If, in addition, ® C L,(R) for some p (1<p<00), then ¥ can be chosen to
be a subset of L,(R).

To describe the characterizations of S| (&) we introduce the notion of the
convolution of a vector sequence and a matrix sequence. Given sequences

Cij = {C!'/‘(OC)} S lo(Z) (l = 1,. . ,l,] = 1,. . .,k), set C = (CU)ISiél;léjék S
(lo(Z))le. For f = (fl, L fi)e (lo(Z))l define h = (hy,..., ) € (I(Z))" by

szl Jejla—=p) (j=1,...,k), a€Z

i=1

We call /& as the convolution of the vector sequence f and the matrix
sequence C, and denoted by 4 = f'«C. Let

Me={h=(h,....h) h=f*C.f € (Io(Z))'},

and M ¢ denote the closure of M¢ in normed linear space (/;(Z))".

Let & = {¢,,¢5,...,¢,,} be a finite collection of compactly supported
integrable functions. As a consequence of Theorem(J) in S(&) we can find a
generator with L-stable shifts the elements of which have compact supports.

THEOREM 1. Assume that © = {0y,...,0;} the elements of which have
compact supports is the generator with Ly-stable shifts in S(®), and

k
b= > r@(-—a) (i=1,...,m).
j=1

Let R = (ry)<icmi<jer € (b(Z))" ", Then S1(P) = Sy, (0); S1(P) =
S(®) N Li(R) if and only if Mg = (1(Z))".

Proof. 1ff € Si(®), there exists some sequence { F;(x)} of Sy(®) such that

tim |13 — 1}, = 0.
l—00
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Assume

iz oi(x —a),

where {fl([)(ﬁ)} c l()(Z) (l = 17,. . ,Wl;l = ]’2’ . ) We have
x) = Z S @) i(x — )
i=1 o
m k
=>4 (Z > fo(ﬁ)ﬁj(xaﬁ)>
i=1 o i

k m

33 S A @ - 0)8(x - )

=1 7 =1 e

k
> > 4000 —),

=1

~.

where & (y) = 37, S, £ (@)ry(y — ). Obviously, d¥) = (d",....d\")
Mp. Since the L;-stability of {0;,...,0;} it follows that the convergence
of {F;( )} in L; is equivalent to the convergence of the sequences
dj (j=1,...,k) in [, (Z). Consequently, there exist the sequences d, ...,
di in [ (Z ) such that

lim (4" —dll, =0, j=1.....k
and
k
lim ||Fi() =) > di)0;(- = )| =0.
- j=1 7 1
Hence

ZZ j(x =7).

Since d = (dy,...,dy) € Mg, we have f(x) € Sj1,(0). Conversely, assume
f(x) € S, (0),ie.,

ZZ@ (=),
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where e T (e1,-. Se;‘) € MR By t}le deﬁmltlon of MR, we can find sequences
g = (g§>,...,gk yand £ = (£ ) € (Iy(Z))™ such that

g(l) :f(l)*R7

. ! .
Ihm”gj(')_ej”l:()v (]:1>7k)
—00

Define the function sequence G;(x)(/ =1,2,...) as

ZZgU) 0i(x —a).

Since ©® = {0y, ...,0;} has L, stable shifts, from

k
:ZZ (9 () — () 0;(x — o),

we have limy_ ||Gi(x) — /(x)]||, = 0. However,
G/(x) = /YZ; Z g\ (@)0;(x — )
=i >y > A" Brsta =0
_ f %fﬁ”(ﬁ)}i 5 e B =)
- i Eﬁjf}”(ﬁ)]i > r)or =)

This verifies Gi(x) € So(®). We obtain f(x) € S;(®) and have proved
$1(®) = Sy1,(6).

Since the generator ©® = {0,...,0;} has L;-stable shifts, it is well known
(see for example [5]) that S(@) N Li(R) =S, ,x(0). Noting S(@) = S(P)
we obtain S;(®) = S(®) N L;(R) if and only if Mg = (1,(Z))*. 1

It is well known that the set of all contmuous linear functionals on the
normed linear space (/;(Z))" is (I.(Z))" called as the dual space of (/; (kZ
For any c¢=(c1,...,cr) € (o(Z)" and d = (dy,...,dy) € (L(Z))* we
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denote by (c,d) the value of the functional ¢ at d. We have
k k
Z ci, di) Z Z ci(a)di(o
i=1 =l o«

Using the theory of the dual space, we shall prove the following theorem
which describes the conditions guaranteeing Mg = (ll(Z))k. Let T denote
the unit circle {z: |z| = 1} on the complex plane.

mxk ~

THEOREM 2. Assume that R = (ry)|cicpmi<j<k € (O(ZL))"", Fy(z) =
> r,](oc)z"" and the matrix R( ) = (Fy(z ))1<z<m,1<;<k Then Mg =
(L(Z))* if and only if R(z) has rank k for any z€ T.

Proof.  Assume that there exists 2 € T such that the rank of R(1)<k.
There exists (71,. .., #)#0 such that

i (A) + -+ tFg(A) = 0, i=1,...,m.
Define s = (s1,...,5) € (/(Z))* as follows:
s1(@) =627 sa) =6027% oosk(0) =547, weZ.

It is obvious s € (I(Z))", and s is nontrivial. Assume g = (g1,...,gx) €
Mp. There is f = (f1,...,fm) € (Io(Z))" such that

ZMIZ Dry(f—a), j=1...k BEL

We have
k k k
(5,9)=> (590 =>_ > _ gBsi(B)=>_ > gi(Br;i”’

Jj=1 j=1 B j=1 B
k m

=333 Sy Pry(B-w)
j=1 p i=1 o
k m

= Z Zfl((x) Z tj;‘( >r1/(y)
=1 i=l o Y
m k



88 WU ZHENGCHANG

Hence for any d = (dy,...,d;) € My by the continuity of the functional s
we have

k
(s.d)y =" (5.d) = 0.

J=1

By thekcompleteness of the normed linear space (/; (Z))k, we obtain Mg#
(h(Z))".
_On the other hand if R(z) has rank k for any z € T, we shall prove
Mg = (L(Z))". We set uy(a) = Fy(—a) a € Z, 1<j<m; 1<I<k; i(z) =
dog ui(o)z™* Ulz) = (ﬁ[j(z>>lglgk;l<_/<m' Now the k x k matrix M(z) =
U(z)R(z) has rank k for every z € T. Let Mj;(z) denote the cofactor of the
entry my(z) of the matrix M(z) = (my;(2)); ;<1 <j<k- Since det M(z)#0
for any z € T we may set '

N Mj(z) .

(2)=———, [I=1,...,k; =1,...,k

nlj(z) det M(Z)’ ) y Ny ] 9 )
for z € T. The matrix N(z2) = (7i(2))| < /<1 <<k Satisfies N(z)M(z) = I for
every z € T, where I is k x k identity matrix. It is known that there are
expansions 7ij(z) = ), nj(x)z~* where the sequences nj; = {nj(2)}, are all
exponentially decay. We need to prove (/; (Z))k S M. To this end for any
d=(d,....d) e (I,(Z))" set

k
=1

k
j=1

It is easy to verify that d; = Y )", fixry, (j=1,...,k). Let

g [HB) 1B
S (ﬁ)—{m o

and dj(“') =37, fl(‘y) #r;. We have lim,_. |[fl(“') — fill; = 0. Consequently,

m m ()

N
> fixr =Y S wry
= =1

m
< DI =l maxil,
=1 :

1d — djl|, =

1
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We obtain  lim,_. ||d —djll; =0 (j=1,...,k). Obviously d¥ =
(dl(s),...,d(y)) € Mg and’ d®) converges (o d in the space (I1(Z))*, this
shows d € M. Hence (I,(Z))* < Mpg. 1

For understanding the structure of S| (@) it is important to investigate the
characterization of the subspace My of (/;(Z))" since S)(P) = Si1,(0) as
described in Theorem 1. For this purpose, we introduce some notations in
the dual space further. The theory of the dual space can also be used to
investigate the stability of the shifts of distributions [9]. For a normed
vector space H the set of all continuous linear functionals on H is denoted
by H'. Let X be a subset of H, a functional x’ € H’ is called an annihilator
of X if

X' (x) =0, xeX.

The set of all annihilators of X is denoted by X°. On the other hand for a
subset Y of H' we call x € H an annihilator of Y if

X' (x) =0, X ev.

The set of such annihilators of Y is denoted by °Y. The following result is
easily derived [8].

LEMMA 1. Let H be a normed vector space. If X is a subset of H, and M
is the closed subspace spanned by X in H, then M = °(X°).

Therefore, we have Mg = °(MFg). Furthermore, we desire to emphasize
that Mg is related to the solutions to a system of homogeneous linear
difference equations. To this end for a given o € Z, t* denotes the difference
operator on /(Z), which is defined by

b =b(-+a), bel(Z).

A Laurent polynomial P(z) =, d(x)z* induces a difference operator
= Z d(a)t*

From an element f = (f,...,/m) € (ly(Z))" we obtain an element h =
(hy, ..., hi) of Mg, where h = (hy,... h) € (I(Z)) and

i Z (B)rji(o = B), welZ, i=1,... k.

J=1
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Assume that s = (s1,...,5%) € (Io(Z))" is in Mg. Then

z 3403 ¥ i

o =1

m k
=Y SIOY Eonstur =0 @)
B

-1 r

Because (2) holds for every f = (f1,...,/m) € (lh(Z))", we obtain

ZZr,, )si(u+ p) =0, pe’l, j=1,....m

This means that s= (sy,...,s) must satisfy the system of difference
equations:
k
S Fi(si=0,  j=1...,m (3)
i=1

As before R(z) = (Fj(2)1 <icmi<j<k Lot
Q(R) = {w € C\{0} : rank(R(w)) <k}.

It can be proved (see [7]) that all solutions to the system of difference
equations (3) form a finite-dimensional subspace of ~(1(Z))k, which is
denoted by t(R), and every element f = (f1,...,fx) € ©(R) has the form

Z 0" gj (0 o€ Z, 4)

weQ(R

where g, are polynomials.

LEMMA 2.  The annihilator Mg° of My is finite dimensional.
(1°) Mg® = (R) N (I (2))";
(2°) if QURYNT = {t1,...,t.} is not empty, every element s = (sy,. ..,
Sk) € MR° has the form

'SZ

=% o
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Proof.  Condition (1°) is derived from (3) and the definition of MFg.

From (4) it is obvious that an element s = (s1,. .., s¢) of T(R) lies in (Lo (Z))*

if and only if sum (4) takes w € Q(R) N T and constant polynomials as g; .
This gives (2°). 1

Now suppose {hi,...,hy} is a base of Mg and hj = (hj,... hy) €
(I(Z))* has the form

L
0) =Y enll, (5)
v=1

where ¢, are complex, ¢, € Q(R) N T.

THEOREM 3. Assume O = {0,,...,0r} is the generator with L-stable
shifts in S(®), {hi,...,hx} is a base of Mg, and h; has the form (5). Then

k
S1(P) :{ :Z ap:(ar,. . a) € (h(2)),

k
Z Z Z C/lval 0, ]1,,N} (6)

=1 o y=1

~

Proof. From Theorem 1 we know

Considering that {hi,...,hy} is a base of Mg, conclusion (6) is obtained
from Mg =°(Mg). 1

ExamPLE. Let us study the previous example on the basis of the results
of this paper Now ¥ = {y/}. From y(-) = y(-) — x(- — 1) we know R(z) =
1 —z"'. For zo =1 we have R(zo) = 0. Thus, we obtain Mz#/,(Z ) and
Si( );AS( )N Li(R) by Theorems 1 and 2. This coincides with our direct
observation previously. It is obvious that in this case Mg has a base {s}
where s = {s(2)},, and s(a) = 1, « € Z. Hence by Theorem 3

= {Z,{( —a)a(a): Z|a(oc)|<oo and Za(a) = 0}_ (7)

We can also verify (7) directly. In fact, if f(x) € Si(¥), we know f(x) can be
written as f(x) =, a(o)y(- — o) with ) |a(«)| <oo since Si(P)=S(¥)N
Li(R) [5]. Moreover, it holds [f(x)dx =0 as we have observed. This
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induces " a(a) =0. Conversely, if Y |a(x)|<oo and >, a(a) =0, it is
obvious that the function f(x) = >, x(- — a)a(e) lies in L;(R). For positive
integers M, N and an integer k define

N
fun = D w(-—a)A().
a=—M

It is obvious that fy, y lies in So(¥). We have

S0 ~Fiun) = 3 slxa)alo) + i 2(x — a)a(a)

+ x(x =N —-1DAN) — y(x + M)A(—M).

Thus, we obtain

-M 00
I =funlh < D la@]+ Y la(@)| + [A(N)| + |4(=M)].
=—00 a=N-+1

It follows

o dim =Sl = 0.

Therefore, f(x) € S| (V).
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