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In this paper, we investigate finitely generated shift-invariant subspaces in L1ðRÞ:
We first introduce the notion of the convolution of a vector sequence and a matrix

sequence. Then by the theory of dual space of the normed linear space we obtain the

complete characterizations of finitely generated shift-invariant spaces in L1ðRÞ; based
on the existence of generator with linearly independent shifts in finitely generated

shift-invariant subspaces on the real line. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

The shift-invariant spaces generated by a finite number of compactly
supported functions play important role in wavelet theory and other
analysis area. A linear space of functions S on R is said to be shift-invariant
if f ð� � kÞ 2 S for any k 2 Z whenever f 2 S: Given a finite collection F ¼
ff1;f2; . . . ;fmg of compactly supported functions, S0ðFÞ denotes the linear
span of ffið� � jÞ : i ¼ 1; 2; . . . ;m; j 2 Zg: It is obvious that S0ðFÞ is the
smallest shift-invariant space containing F: If F is a subset of LpðRÞ; we use
SpðFÞ to denote the closure of S0ðFÞ in LpðRÞ: Here, as usual, LpðRÞ is the
normed linear space of all measurable functions f ðxÞ on R such that jf ðxÞjp
is integrable and the norm is defined by

jjf jjp :¼
Z 1

�1
jf ðxÞjp dx

� �1=p

:

Let lðZÞ be the linear space of all sequences on Z; and l0ðZÞ the linear
subspace consisting of all finitely supported sequences on Z: Given a
sequence c 2 lðZÞ; we define jjcjjp :¼ ð

P
a jcðaÞj

pÞ1=p; 14p51; jjcjj1 :¼
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supafjcðaÞjg: For 14p41; lpðZÞ denotes the normed linear space of all
sequences c on Z such that jjcjjp51: For b; c 2 lðZÞ the convolution of b

and c is defined by

b*cðaÞ ¼
X
b

bða� bÞcðbÞ; a 2 Z;

whenever the above series is absolutely convergent. For a given c 2 lðZÞ the
symbol of c is the formal series

P
a cðaÞz�a denoted by *ccðzÞ:We shall use the

semi-convolution to study the structure of SpðFÞ: For a given function f
and a sequence c 2 lðZÞ the semi-discrete convolution f*

0c is defined as the
sum X

a

fð� � aÞcðaÞ

which is well defined under various assumptions on the function f and the
sequence c: It is obvious that this sum makes sense if f has compact
support. SðFÞ denotes the linear space of all functions

Pm
i¼1 fi *

0ci where
c ¼ ðc1; . . . ; cmÞ 2 ðlðZÞÞm: The linear space SðFÞ is called finitely generated
by F: For a subspace A of ðlðZÞÞm it corresponds a subspace SAðFÞ of SðFÞ
defined as

SAðFÞ ¼ f : f ¼
Xm

i¼1

fi *
0ai; a ¼ ða1; . . . ; amÞ 2 A

( )
:

In [1, 2] de Boor, Devore and Ron studied finitely generated shift-
invariant subspaces of L2ðRsÞ; and gave a characterization for such spaces in
terms of the Fourier transforms of their generators. In [5] Jia studied shift-
invariant spaces generated by a finite number of compactly supported
functions in LpðRsÞ ð14p41Þ; and gave a characterization of such spaces
in terms of the semi-convolutions of their generators with sequences on Zs:
When s ¼ 1; and 15p51; without the stability assumption the following
theorem was obtained by Jia [4].

Theorem. For 15p51

SpðFÞ ¼ SðFÞ \ LpðRÞ: ð1Þ

Consequently for 15p51 a function f 2 LpðRÞ lies in SpðFÞ if and only if

there are sequences ai ði ¼ 1; . . . ;mÞ such that

f ¼
Xm

i¼1

X
a

fið� � aÞaiðaÞ:
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However, when p ¼ 1 the situation is completely different. Generally, the
conclusion of the above theorem is not valid in the space L1ðRÞ: Here is one
example.

Example. Let w be the characteristic function of [0,1), and c ¼ w�
wð� � 1Þ: It is obvious that

R1
�1 f ðxÞ dx ¼ 0 for any function f in S0ðcÞ: We

also have
R1
�1 f ðxÞ dx ¼ 0 for any f 2 S1ðcÞ since S1ðcÞ is the closure of

S0ðcÞ in L1ðRÞ: However
R1
�1 wðxÞ dx ¼ 1: This means that w =2 S1ðcÞ: It is

easy to verify that w ¼
P1

j¼0 cð� � jÞ 2 SðcÞ: Therefore, S1ðcÞaSðcÞ \
L1ðRÞ:

The main purpose of this paper is to give the characterizations of finitely
generated shift-invariant spaces in L1ðRÞ: After introducing the convolution
of a vector sequence and a matrix sequence, we study the characterization of
S1ðFÞ; and we obtain the sufficient and necessary conditions which
guarantee S1ðFÞ ¼ SðFÞ \ L1ðRÞ by the theory of the dual space of the
normed linear space L1ðRÞ:

It is worth noting that when s > 1 it was proved [5] that (1) is true under
the extra assumption that F consists of a finite number of compactly
supported functions in LpðRsÞ whose shifts are stable.

2. CHARACTERIZATIONS OF S1ðFÞ

To treat shift-invariant spaces the generators with linearly independent
shifts play important role. Let ff1; . . . ; fkg be a finite collection of compactly
supported functions on R and aj ¼ fajðaÞg 2 lðZÞ ð j ¼ 1; . . . ; kÞ; the shifts
of ff1; . . . ; fkg are said to be linearly independent if

Xk

j¼1

X
a

ajðaÞfjðx � aÞ ¼ 0 ) aj ¼ 0; j ¼ 1; . . . ; k:

If, in addition, ff1; . . . ; fkg is a finite collection of compactly supported
functions in LpðRÞ; we say that the shifts of ff1; . . . ; fkg are Lp-stable if there
exist two positive constants C1 and C2 such that for any sequences a1; . . . ;
ak 2 lpðZÞ;

C1

Xk

j¼1

jjajjjp4
Xk

j¼1

fj *
0aj

					
					

					
					
p

4C2

Xk

j¼1

jjajjjp:

It was proved by Jia and Micchelli [6] that if shifts of ff1; . . . ; fkg are linearly
independent, they are Lp-stable.
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For the existence of the generator with linearly independent shifts in SðFÞ
we appeal for the following result which was proved in [4]:

Theorem(J). Let F be a finite collection of nontrivial distributions

on R with compact support. Then there exists another finite collection C of

compactly supported distributions on R with following properties:

(1) The shifts of the elements in C are linearly independent;

(2) #C4#F;

(3) F � S0ðCÞ;
(4) SðCÞ ¼ SðFÞ:

If, in addition, F � LpðRÞ for some p ð14p41Þ; then C can be chosen to

be a subset of LpðRÞ:

To describe the characterizations of S1ðFÞ we introduce the notion of the
convolution of a vector sequence and a matrix sequence. Given sequences
cij ¼ fcijðaÞg 2 l0ðZÞ ði ¼ 1; . . . ; l; j ¼ 1; . . . ; kÞ; set C ¼ ðcijÞ14i4l;14j4k 2
ðl0ðZÞÞl�k: For f ¼ ðf1; . . . ; flÞ 2 ðl0ðZÞÞl define h ¼ ðh1; . . . ; hkÞ 2 ðl0ðZÞÞk by

hjðaÞ ¼
Xl

i¼1

X
b

fiðbÞcijða� bÞ ð j ¼ 1; . . . ; kÞ; a 2 Z:

We call h as the convolution of the vector sequence f and the matrix
sequence C; and denoted by h ¼ f *C: Let

MC ¼ fh ¼ ðh1; . . . ; hkÞ : h ¼ f *C; f 2 ðl0ðZÞÞlg;

and %MMC denote the closure of MC in normed linear space ðl1ðZÞÞk:
Let F ¼ ff1;f2; . . . ;fmg be a finite collection of compactly supported

integrable functions. As a consequence of Theorem(J) in SðFÞ we can find a
generator with L1-stable shifts the elements of which have compact supports.

Theorem 1. Assume that Y ¼ fy1; . . . ; ykg the elements of which have

compact supports is the generator with L1-stable shifts in SðFÞ; and

fi ¼
Xk

j¼1

X
a

rijðaÞyjð� � aÞ ði ¼ 1; . . . ;mÞ:

Let R ¼ ðrijÞ14i4m;14j4k 2 ðl0ðZÞÞm�k: Then S1ðFÞ ¼ S %MMR
ðYÞ; S1ðFÞ ¼

SðFÞ \ L1ðRÞ if and only if %MMR ¼ ðl1ðZÞÞk:

Proof. If f 2 S1ðFÞ; there exists some sequence fFlðxÞg of S0ðFÞ such that

lim
l!1

jjFl � f jj1 ¼ 0:
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Assume

FlðxÞ ¼
Xm

i¼1

X
a

f
ðlÞ

i ðaÞfiðx � aÞ;

where ff
ðlÞ

i ðbÞg 2 l0ðZÞ ði ¼ 1; . . . ;m; l ¼ 1; 2; . . .Þ: We have

FlðxÞ ¼
Xm

i¼1

X
a

f
ðlÞ

i ðaÞfiðx � aÞ

¼
Xm

i¼1

X
a

f
ðlÞ

i ðaÞ
Xk

j¼1

X
b

rijðbÞyjðx � a� bÞ
 !

¼
Xk

j¼1

X
g

Xm

i¼1

X
a

f
ðlÞ

i ðaÞrijðg� aÞyjðx � gÞ

¼
Xk

j¼1

X
g

d
ðlÞ
j ðgÞyjðx � gÞ;

where d
ðlÞ
j ðgÞ ¼

Pm
i¼1

P
a f

ðlÞ
i ðaÞrijðg� aÞ: Obviously, dðlÞ ¼ ðdðlÞ

1 ; . . . ; d
ðlÞ
k Þ 2

MR: Since the L1-stability of fy1; . . . ; ykg it follows that the convergence
of fFlðxÞg in L1 is equivalent to the convergence of the sequences
d
ðlÞ
j ð j ¼ 1; . . . ; kÞ in l1ðZÞ: Consequently, there exist the sequences d1; . . . ;

dk in l1ðZÞ such that

lim
l!1

jjdðlÞ
j � djjj1 ¼ 0; j ¼ 1; . . . ; k

and

lim
l!1

Flð�Þ �
Xk

j¼1

X
g

djðgÞyjð� � gÞ
					

					
					

					
1

¼ 0:

Hence

f ðxÞ ¼
Xk

j¼1

X
g

djðgÞyjðx � gÞ:

Since d ¼ ðd1; . . . ; dkÞ 2 %MMR; we have f ðxÞ 2 S %MMR
ðYÞ: Conversely, assume

f ðxÞ 2 S %MMR
ðYÞ; i.e.,

f ðxÞ ¼
Xk

j¼1

X
g

ejðgÞyjðx � gÞ;
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where e ¼ ðe1; . . . ; ekÞ 2 %MMR: By the definition of %MMR; we can find sequences
gðlÞ ¼ ðgðlÞ

1 ; . . . ; g
ðlÞ
k Þ and f ðlÞ ¼ ðf ðlÞ

1 ; . . . ; f
ðlÞ

m Þ 2 ðl0ðZÞÞm such that

gðlÞ ¼ f ðlÞ
*R;

lim
l!1

jjgðlÞ
j � ejjj1 ¼ 0; ð j ¼ 1; . . . ; kÞ:

Define the function sequence GlðxÞðl ¼ 1; 2; . . .Þ as

GlðxÞ ¼
Xk

j¼1

X
a

g
ðlÞ
j ðaÞyjðx � aÞ:

Since Y ¼ fy1; . . . ; ykg has L1 stable shifts, from

GlðxÞ � f ðxÞ ¼
Xk

j¼1

X
a

ðgðlÞ
j ðaÞ � ejðaÞÞyjðx � aÞ;

we have liml!1 jjGlðxÞ � f ðxÞjj1 ¼ 0: However,

GlðxÞ ¼
Xk

j¼1

X
a

g
ðlÞ
j ðaÞyjðx � aÞ

¼
Xk

j¼1

X
a

Xm

i¼1

X
b

f
ðlÞ

i ðbÞrijða� bÞyjðx � aÞ

¼
Xm

i¼1

X
b

f
ðlÞ

i ðbÞ
Xk

j¼1

X
a

rijða� bÞyjðx � aÞ

¼
Xm

i¼1

X
b

f
ðlÞ

i ðbÞ
Xk

j¼1

X
g

rijðgÞyjðx � b� gÞ

¼
Xm

i¼1

X
b

f
ðlÞ

i ðbÞfiðx � bÞ:

This verifies GlðxÞ 2 S0ðFÞ: We obtain f ðxÞ 2 S1ðFÞ and have proved
S1ðFÞ ¼ S %MMR

ðYÞ:
Since the generator Y ¼ fy1; . . . ; ykg has L1-stable shifts, it is well known

(see for example [5]) that SðYÞ \ L1ðRÞ ¼ Sðl1ðzÞÞkðYÞ: Noting SðYÞ ¼ SðFÞ
we obtain S1ðFÞ ¼ SðFÞ \ L1ðRÞ if and only if %MMR ¼ ðl1ðZÞÞk: ]

It is well known that the set of all continuous linear functionals on the
normed linear space ðl1ðZÞÞk is ðl1ðZÞÞk called as the dual space of ðl1ðZÞÞk:
For any c ¼ ðc1; . . . ; ckÞ 2 ðl1ðZÞÞk and d ¼ ðd1; . . . ; dkÞ 2 ðl1ðZÞÞk we
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denote by hc; di the value of the functional c at d: We have

hc; di ¼
Xk

i¼1

hci; dii ¼
Xk

i¼1

X
a

ciðaÞdiðaÞ:

Using the theory of the dual space, we shall prove the following theorem
which describes the conditions guaranteeing %MMR ¼ ðl1ðZÞÞk: Let T denote
the unit circle fz : jzj ¼ 1g on the complex plane.

Theorem 2. Assume that R ¼ ðrijÞ14i4m;14j4k 2 ðl0ðZÞÞm�k; *rrijðzÞ ¼P
a rijðaÞz�a and the matrix *RRðzÞ ¼ ð*rrijðzÞÞ14i4m;14j4k: Then %MMR ¼

ðl1ðZÞÞk
if and only if *RRðzÞ has rank k for any z 2 T :

Proof. Assume that there exists l 2 T such that the rank of *RRðlÞ5k:
There exists ðt1; . . . ; tkÞa0 such that

t1 *rri1ðlÞ þ � � � þ tk *rrikðlÞ ¼ 0; i ¼ 1; . . . ;m:

Define s ¼ ðs1; . . . ; skÞ 2 ðlðZÞÞk as follows:

s1ðaÞ ¼ t1l
�a; s2ðaÞ ¼ t2l

�a; . . . ; skðaÞ ¼ tkl
�a; a 2 Z:

It is obvious s 2 ðl1ðZÞÞk; and s is nontrivial. Assume g ¼ ðg1; . . . ; gkÞ 2
MR: There is f ¼ ðf1; . . . ; fmÞ 2 ðl0ðZÞÞm such that

gjðbÞ ¼
Xm

i¼1

X
a

fiðaÞrijðb� aÞ; j ¼ 1 . . . ; k; b 2 Z:

We have

hs; gi ¼
Xk

j¼1

hsj; gji ¼
Xk

j¼1

X
b

gjðbÞsjðbÞ ¼
Xk

j¼1

X
b

gjðbÞtjl
�b

¼
Xk

j¼1

X
b

Xm

i¼1

X
a

fiðaÞtjl
�brijðb� aÞ

¼
Xk

j¼1

Xm

i¼1

X
a

fiðaÞ
X
g

tjl
ð�g�aÞrijðgÞ

¼
Xm

i¼1

X
a

ðfiðaÞl�aÞ
Xk

j¼1

X
g

tjl
�grijðgÞ ¼ 0:



WU ZHENGCHANG88
Hence for any d ¼ ðd1; . . . ; dkÞ 2 %MMR by the continuity of the functional s

we have

hs; di ¼
Xk

j¼1

h sj; dji ¼ 0:

By the completeness of the normed linear space ðl1ðZÞÞk; we obtain %MMRa
ðl1ðZÞÞk:

On the other hand if *RRðzÞ has rank k for any z 2 T ; we shall prove
%MMR ¼ ðl1ðZÞÞk: We set uljðaÞ ¼ %rrjlð�aÞ a 2 Z; 14j4m; 14l4k; *uuljðzÞ ¼P
a uljðaÞz�a; UðzÞ ¼ ð *uuljðzÞÞ14l4k;14j4m: Now the k � k matrix MðzÞ ¼

UðzÞ *RRðzÞ has rank k for every z 2 T : Let MljðzÞ denote the cofactor of the
entry mljðzÞ of the matrix MðzÞ ¼ ðmljðzÞÞ14l4k;14j4k: Since det MðzÞa0
for any z 2 T we may set

*nnljðzÞ ¼
MjlðzÞ

det MðzÞ; l ¼ 1; . . . ; k; j ¼ 1; . . . ; k

for z 2 T : The matrix NðzÞ ¼ ð *nnljðzÞÞ14l4k;14j4k satisfies NðzÞMðzÞ ¼ I for
every z 2 T ; where I is k � k identity matrix. It is known that there are
expansions *nnljðzÞ ¼

P
a nljðaÞz�a where the sequences nlj ¼ fnljðaÞga are all

exponentially decay. We need to prove ðl1ðZÞÞkD %MMR: To this end for any
d ¼ ðd1; . . . ; dkÞ 2 ðl1ðZÞÞk set

gj ¼
Xk

l¼1

dl *nlj ð j ¼ 1; . . . ; kÞ;

fl ¼
Xk

j¼1

gj *ujl ðl ¼ 1; . . . ;mÞ:

It is easy to verify that dj ¼
Pm

l¼1 fl *rlj; ð j ¼ 1; . . . ; kÞ: Let

f
ðsÞ

l ðbÞ ¼
flðbÞ; jbj4s;

0; jbj > s

(

and d
ðsÞ
j ¼

Pm
l¼1 f

ðsÞ
l *rlj: We have lims!1 jjf ðsÞ

l � fl jj1 ¼ 0: Consequently,

jjdðsÞ
j � djjj1 ¼

Xm

j¼1

fl *rlj �
Xm

j¼1

f
ðsÞ

l *rlj

					
					

					
					
1

4
Xm

l¼1

jjfl � f
ðsÞ

l jj1 max
l;j

jjrlj jj1:
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We obtain lims!1 jjdðsÞ
j � djjj1 ¼ 0 ð j ¼ 1; . . . ; kÞ: Obviously dðsÞ ¼

ðdðsÞ
1 ; . . . ; d

ðsÞ
k Þ 2 MR and dðsÞ converges to d in the space ðl1ðZÞÞk; this

shows d 2 %MMR: Hence ðl1ðZÞÞkD %MMR: ]

For understanding the structure of S1ðFÞ it is important to investigate the
characterization of the subspace %MMR of ðl1ðZÞÞk since S1ðFÞ ¼ S %MMR

ðYÞ as
described in Theorem 1. For this purpose, we introduce some notations in
the dual space further. The theory of the dual space can also be used to
investigate the stability of the shifts of distributions [9]. For a normed
vector space H the set of all continuous linear functionals on H is denoted
by H 0: Let X be a subset of H; a functional x0 2 H 0 is called an annihilator
of X if

x0ðxÞ ¼ 0; x 2 X :

The set of all annihilators of X is denoted by X8: On the other hand for a
subset Y of H 0 we call x 2 H an annihilator of Y if

x0ðxÞ ¼ 0; x0 2 Y :

The set of such annihilators of Y is denoted by 8Y : The following result is
easily derived [8].

Lemma 1. Let H be a normed vector space. If X is a subset of H; and M

is the closed subspace spanned by X in H; then M ¼ 8ðX8Þ:

Therefore, we have %MMR ¼ 8ðMR8Þ: Furthermore, we desire to emphasize
that MR8 is related to the solutions to a system of homogeneous linear
difference equations. To this end for a given a 2 Z; ta denotes the difference
operator on lðZÞ; which is defined by

tab :¼ bð� þ aÞ; b 2 lðZÞ:

A Laurent polynomial PðzÞ ¼
P

a dðaÞza induces a difference operator

PðtÞ ¼
X
a

dðaÞta:

From an element f ¼ ðf1; . . . ; fmÞ 2 ðl0ðZÞÞm we obtain an element h ¼
ðh1; . . . ; hkÞ of MR; where h ¼ ðh1; . . . ; hkÞ 2 ðlðZÞÞk and

hiðaÞ ¼
Xm

j¼1

X
b

fjðbÞrjiða� bÞ; a 2 Z; i ¼ 1; . . . ; k:
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Assume that s ¼ ðs1; . . . ; skÞ 2 ðl1ðZÞÞk is in MR8: Then

hs; hi ¼
Xk

i¼1

X
a

siðaÞhiðaÞ

¼
Xk

i¼1

X
a

siðaÞ
Xm

j¼1

X
b

fjðbÞrjiða� bÞ

¼
Xm

j¼1

X
b

fjðbÞ
Xk

i¼1

X
m

rjiðmÞsiðmþ bÞ ¼ 0: ð2Þ

Because (2) holds for every f ¼ ðf1; . . . ; fmÞ 2 ðl0ðZÞÞm; we obtain

Xk

i¼1

X
m

rjiðmÞsiðmþ bÞ ¼ 0; b 2 Z; j ¼ 1; . . . ;m:

This means that s ¼ ðs1; . . . ; skÞ must satisfy the system of difference
equations:

Xk

i¼1

*rrjiðtÞsi ¼ 0; j ¼ 1; . . . ;m: ð3Þ

As before *RRðzÞ ¼ ð*rrijðzÞÞ14i4m;14j4k; let

Oð *RRÞ ¼ fo 2 C=f0g : rankð *RRðoÞÞ5kg:

It can be proved (see [7]) that all solutions to the system of difference
equations (3) form a finite-dimensional subspace of ðlðZÞÞk; which is
denoted by tð *RRÞ; and every element f ¼ ðf1; . . . ; fkÞ 2 tð *RRÞ has the form

fjðaÞ ¼
X

o2Oð *RRÞ
oaqj;oðaÞ; a 2 Z; ð4Þ

where qj;o are polynomials.

Lemma 2. The annihilator MR8 of MR is finite dimensional.

ð18Þ MR8 ¼ tð *RRÞ \ ðl1ðZÞÞk;

ð28Þ if Oð *RRÞ \ T ¼ ft1; . . . ; tLg is not empty, every element s ¼ ðs1; . . . ;
skÞ 2 MR8 has the form

sjðaÞ ¼
XL

n¼1

cjnt
a
n :
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Proof. Condition ð18Þ is derived from (3) and the definition of MR8:
From (4) it is obvious that an element s ¼ ðs1; . . . ; skÞ of tð *RRÞ lies in ðl1ðZÞÞk

if and only if sum (4) takes o 2 Oð *RRÞ \ T and constant polynomials as qj;o:
This gives ð28Þ: ]

Now suppose fh1; . . . ; hNg is a base of MR8 and hj ¼ ðhj1; . . . ; hjkÞ 2
ðl1ðZÞÞk has the form

hjlðaÞ ¼
XL

n¼1

cjlnt
a
n ; ð5Þ

where cjln are complex, tn 2 Oð *RRÞ \ T :

Theorem 3. Assume Y ¼ fy1; . . . ; ykg is the generator with L1-stable

shifts in SðFÞ; fh1; . . . ; hNg is a base of MR8; and hj has the form (5). Then

S1ðFÞ ¼ f ðxÞ ¼
Xk

l¼1

yl *
0al : ða1; . . . ; akÞ 2 ðl1ðZÞÞk;

(

Xk

l¼1

X
a

XL

n¼1

tancjlnalðaÞ ¼ 0; j ¼ 1; . . . ;N

)
: ð6Þ

Proof. From Theorem 1 we know

S1ðFÞ ¼ f ðxÞ ¼
Xk

l¼1

yl *
0al : ða1; . . . ; akÞ 2 %MMR

( )
:

Considering that fh1; . . . ; hNg is a base of MR8; conclusion (6) is obtained
from %MMR ¼ 8ðMR8Þ: ]

Example. Let us study the previous example on the basis of the results
of this paper. Now C ¼ fcg: From cð�Þ ¼ wð�Þ � wð� � 1Þ we know *RRðzÞ ¼
1� z�1: For z0 ¼ 1 we have *RRðz0Þ ¼ 0: Thus, we obtain %MMRal1ðZÞ and
S1ðCÞaSðCÞ \ L1ðRÞ by Theorems 1 and 2. This coincides with our direct
observation previously. It is obvious that in this case MR8 has a base fsg
where s ¼ fsðaÞga2Z and sðaÞ ¼ 1; a 2 Z: Hence by Theorem 3

S1ðCÞ ¼
X
a

wð� � aÞaðaÞ :
X
a

jaðaÞj51 and
X
a

aðaÞ ¼ 0

( )
: ð7Þ

We can also verify (7) directly. In fact, if f ðxÞ 2 S1ðCÞ; we know f ðxÞ can be
written as f ðxÞ ¼

P
a aðaÞwð� � aÞ with

P
jaðaÞj51 since S1ðCÞDSðCÞ \

L1ðRÞ [5]. Moreover, it holds
R

f ðxÞ dx ¼ 0 as we have observed. This
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induces
P

aðaÞ ¼ 0: Conversely, if
P

jaðaÞj51 and
P

a aðaÞ ¼ 0; it is
obvious that the function f ðxÞ ¼

P
a wð� � aÞaðaÞ lies in L1ðRÞ: For positive

integers M;N and an integer k define

AðkÞ ¼
Xk

a¼�1
aðaÞ;

fM;N ¼
XN

a¼�M

cð� � aÞAðaÞ:

It is obvious that fM;N lies in S0ðCÞ: We have

f ðxÞ � fM;NðxÞ ¼
X�M

a¼�1
wðx � aÞaðaÞ þ

X1
a¼Nþ1

wðx � aÞaðaÞ

þ wðx � N � 1ÞAðNÞ � wðx þ MÞAð�MÞ:

Thus, we obtain

jjf � fM;N jj14
X�M

a¼�1
jaðaÞj þ

X1
a¼Nþ1

jaðaÞj þ jAðNÞj þ jAð�MÞj:

It follows

lim
M!1; N!1

jjf � fM;N jj1 ¼ 0:

Therefore, f ðxÞ 2 S1ðCÞ:
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